DNA Base Excision Repair Enzyme Uracil-DNA Glycosylase Fluorodeoxyuridine Modulates Cellular Expression of the Updated Version
نویسندگان
چکیده
The thymidylate synthase inhibitor 5-fluorouracil (5-FU) continues to play a pivotal role in the treatment of cancer. A downstream event of thymidylate synthase inhibition involves the induction of a self-defeating base excision repair process. With the depletion of TTP pools, there is also an increase in dUMP. Metabolism of dUMP to the triphosphate dUTP results in elevated pools of this atypical precursor for DNA synthesis. Under these conditions, there is a destructive cycle of dUMP incorporation into DNA, removal of uracil by the base excision repair enzyme uracil-DNA glycosylase (UDG), and reincorporation of dUMP during the synthesis phase of DNA repair. The end point is DNA strand breaks and loss of DNA integrity, which contributes to cell death. Evidence presented here indicates that both the nuclear and the mitochondrial isoforms of UDG are modulated by FdUrd (and 5-FU) treatment in certain cell lines but not in others. Modulation occurs at the transcriptional and post-translational levels. Under normal conditions, nUDG protein appears in G1 and is degraded during the S to G2 phase transition. The present study provides evidence that, in certain cell lines, FdUrd mediates an atypical turnover of nUDG. Additional data indicate that, for cell lines that do not down-regulate nUDG, small interfering RNA–mediated knockdown of nUDG significantly increases resistance to the cytotoxic effects of FdUrd. Results from these studies show that nUDG is an additional determinant in FdUrd-mediated cytotoxicity and bolster the notion that the self-defeating base excision repair pathway, instigated by elevated dUTP (FdUTP) pools, contributes to the cytotoxic consequences of 5-FU chemotherapy. (Cancer Res 2006; 66(17): 8829-37)
منابع مشابه
Fluorodeoxyuridine modulates cellular expression of the DNA base excision repair enzyme uracil-DNA glycosylase.
The thymidylate synthase inhibitor 5-fluorouracil (5-FU) continues to play a pivotal role in the treatment of cancer. A downstream event of thymidylate synthase inhibition involves the induction of a self-defeating base excision repair process. With the depletion of TTP pools, there is also an increase in dUMP. Metabolism of dUMP to the triphosphate dUTP results in elevated pools of this atypic...
متن کاملAltered temporal expression of DNA repair in hypermutable Bloom's syndrome cells.
The temporal regulation of DNA repair during synchronous cell proliferation was examined in normal human skin fibroblasts and in Bloom's syndrome skin fibroblasts. Normal human cells regulated DNA repair in a defined temporal sequence prior to the induction of DNA replication. Nucleotide-excision repair was stimulated prior to the induction of base-excision repair, which itself was increased pr...
متن کاملA label-free and sensitive fluorescent method for the detection of uracil-DNA glycosylase activity.
The activity of uracil-DNA glycosylase (UDG), an enzyme in the base excision repair, is detected at a high sensitivity by a DNA substrate containing only one uracil through a label-free fluorescent approach, which is also successfully applied for the measurement of UDG inhibitors.
متن کاملMutational analysis of arginine 276 in the leucine-loop of human uracil-DNA glycosylase.
Uracil residues are eliminated from cellular DNA by uracil-DNA glycosylase, which cleaves the N-glycosylic bond between the uracil base and deoxyribose to initiate the uracil-DNA base excision repair pathway. Co-crystal structures of the core catalytic domain of human uracil-DNA glycosylase in complex with uracil-containing DNA suggested that arginine 276 in the highly conserved leucine interca...
متن کاملHistone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase.
TDG (thymine DNA glycosylase) is an essential multifunctional enzyme involved in DNA base excision repair, DNA demethylation and transcription regulation. TDG is the predominant enzyme that removes thymine from T/G mispair, which arises due to deamination of 5-methyl-cytosine at the CpG dinucleotide, thereby preventing C to T mutations. SIRT1 is a member of class III NAD+-dependent histone/prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006